Reduction of Bi₂O₃-MoO₃ Catalyst during the Ammoxidation of Propylene in the Absence of Gaseous Oxygen

KAMRAN AYKAN

From the Eastern Laboratory, Explosives Department, E. I. du Pont de Nemours & Company, Gibbstown, New Jersey 08027

Received July 30, 1968; revised August 16, 1968

The reduction of a P_2O_5 -Bi₂O₃-MoO₃/SiO₂ catalyst (a catalyst for the acrylonitrile process), consisting of Bi₂O₃·3MoO₃ + BiPO₄ + amorphous SiO₂, during the ammoxidation of propylene to acrylonitrile in the absence of gaseous oxygen was studied quantitatively by X-ray diffraction techniques and by catalytic activity measurements. Amorphous SiO₂ and BiPO₄ are not affected in synthesis. The overall reduction of catalytically active Bi₂O₃·3MoO₃ to metallic Bi and MoO₂ proceeds according to the following two consecutive reactions, where Bi₂O₃·MoO₃ (koechlinite) is an intermediate:

$$\begin{array}{l} \operatorname{Bi}_{2}\operatorname{O}_{3}\cdot \operatorname{3MoO}_{3} \xrightarrow{(\operatorname{C}_{3}\operatorname{H}_{6},\operatorname{NH}_{3})} \operatorname{Bi}_{2}\operatorname{O}_{3}\cdot \operatorname{MoO}_{3} + 2\operatorname{MoO}_{2} + \operatorname{O}_{2} \\ \operatorname{Bi}_{2}\operatorname{O}_{3}\cdot \operatorname{MoO}_{3} \xrightarrow{(\operatorname{C}_{3}\operatorname{H}_{6},\operatorname{NH}_{3})} 2\operatorname{Bi} + \operatorname{MoO}_{2} + 2\operatorname{O}_{2} \end{array}$$

The catalytic activity decreases rapidly with the increasing reduction of the catalyst. The phase changes of the catalyst and the product formation in synthesis correspond quantitatively to the depletion of lattice oxygen from the catalyst. In the absence of gaseous oxygen, the optimum activity for acrylonitrile of silica supported Bi_2O_3 -MoO₃ catalysts is at a Bi:Mo atomic ratio of about 1.

For the catalytic ammoxidation of propylene to acrylonitrile on Bi_2O_3 -MoO₃ based catalysts, a steady state mechanism involving simultaneous reduction and reoxidation of the catalyst surface with gaseous oxygen is suggested.

INTRODUCTION

Some Bi_2O_3 -MoO₃ compositions are used as catalysts for the heterogeneous selective oxidation of unsaturated hydrocarbons. The most significant industrial application is the direct synthesis of acrylonitrile from propylene, ammonia, and air (ammoxidation) over a silica-supported P_2O_5 -Bi₂O₃-MoO₃ catalyst (1, 2):

$$\begin{array}{c} CH_2 \longrightarrow CH_3 + NH_3 + \frac{3}{2}O_2 \rightarrow \\ CH_2 \longrightarrow CH_2 \longrightarrow CH_3 + NH_3 + \frac{3}{2}O_2 \rightarrow \\ \end{array}$$

Kolchin *et al.* studied the effect of some additives to catalyst and published a literature survey (3, 4). Dalin *et al.* (5) found a sharp decline in catalyst activity when there is insufficient oxygen in the feed gas and suggested the possibility of oxygen from the catalyst entering into the reaction thereby changing the composition of the

oxide catalyst. Leclercq (6) reported the preparation of unsaturated nitriles from olefins and ammonia (without gaseous oxygen) over a catalyst consisting of a mass of oxides of arsenic, bismuth, and molybdenum. In this case, the catalyst was regenerated periodically, due to the reduction of the oxide mass, thereby causing it to progressively lose its activity. Similar findings were reported by Eygen *et al.* (7) using antimonates of various elements. Ammoxidation of propylene to acrylonitrile in the absence of gaseous oxygen over a P_2O_5 -Bi₂O₃-MoO₃/ SiO₂ catalyst was observed by Malhotra of this Laboratory (8).

From these references it appears that Bi_2O_3 -MoO₃ based compositions act as catalysts and as reagents (presumably entering into the reaction) during the ammoxidation of propylene without gaseous oxygen. Hence

significant changes in the phase composition and activity of the catalyst with the decreasing concentration of gaseous oxygen in the feed gas are to be expected. However, there is no evidence in the literature for a systematic study of this problem of industrial and scientific importance. This study was undertaken to establish quantitatively the phase changes of the catalyst taking place in synthesis without gaseous oxygen and to correlate these changes with the activity and selectivity of the catalyst.

EXPERIMENTAL PROCEDURE

Phase compositions of the catalyst samples were determined from X-ray diffraction patterns obtained with a Norelco diffractometer using Ni filtered Cu $K\alpha$ radiation. A Tem-Pres SX-2BR diffractometer furnace (Tem-Pres Research Inc., State College, Pennsylvania) equipped with a temperature programmer and recorder was used for phase studies at elevated temperatures.

For crystallographic characterization of Bi_2O_3 ·MoO₃ and Bi_2O_3 ·3MoO₃, precise interplanar spacings were determined from Guinier patterns made with a Hägg camera (80-mm diameter, transmission-type, evacuated, and equipped with a quartz monochromator) with Cu $K\alpha_1$ radiation and using KCl as an internal standard. The integrated relative intensities were obtained from diffractometer patterns using Ni-filtered Cu $K\alpha$ radiation and by planimetering the peak areas.

Most of the catalytic activity tests were conducted in single-stage fluid-bed reactors using 100-cm³ catalyst of 60-200 mesh particle size. The reactors were 19 inches long and were constructed from 1-inch type 304 stainless steel pipe. They contained a feed gas line on the bottom, an off-gas line on the top, a catalyst filling port, and three thermocouple wells. Inside the reactors, two 500mesh stainless steel screens (placed 17 inches apart) served as gas distributor and catalyst entrainment screens. Some fixed-bed activity tests were done in $\frac{1}{2}$ -inch ID stainless steel U-tube reactors using 30-cm³ catalyst of $\frac{3}{16}$ -inch pellets.

The reactors were placed in a molten salt bath and connected to on-line analyti-

cal equipment by means of heated off-gas lines. Α Consolidated Electrodynamics Corp. Model 21-620 mass spectrometer was used to analyze for C₃H₆ and NH₃ in the feed gas and C_3H_6 , acrylonitrile, and CO_2 in the product gas. A Perkin-Elmer Model 154 vapor-phase chromatograph was used to analyze for acrylonitrile, acetonitrile, and NH_3 in the off-gas. A 4 $\frac{1}{2}$ -ft column packed with 10% Quadrol on Porapak-Q was used at 120°C. The feed gas flow rates were measured by means of a calibrated flow meter and reported as Volume Hourly Space Velocity which is defined as the volume of total feed gas at NTP per unit volume of catalyst per hours. All of the runs were made under isothermal conditions and at atmospheric pressure.

RESULTS AND DISCUSSION

A. Phases in the System Bi₂O₃-MoO₃

For this study, crystallographic data for compounds of Bi₂O₃ and MoO₃ were necessary for the determination of phase compositions of the catalysts. The system Bi₂O₃- MoO_3 is the subject of a number of recent studies. Erman et al. (9) studied the system by X-ray diffraction using samples prepared by fusion of oxides at 750–900°C and samples prepared by heating of coprecipitates at 500°C. They found three compounds: two forms of Bi₂O₃·MoO₃ (form I of koechlinite structure and form II), Bi₂O₃·2MoO₃, and $Bi_2O_3 \cdot 3M_0O_3$. $Bi_2O_3 \cdot 2M_0O_3$ is reported to be orthorhombic with a = 10.79, b = 11.89, and c = 11.86 Å, which is formed by a peritectic reaction (10, 11). Doyle and Forbes (12) studied the system by the diffuse reflectance technique and reported 11 phases including 3Bi₂O₃·MoO₃, 2Bi₂O₃·MoO₃, Bi₂O₃· Bi₂O₃·2MoO₃, and Bi₂O₃·3MoO₃. MoO_3 , They gave no X-ray data for these phases. Bleijenberg, Lippens, and Schuit (13) studied the system Bi₂O₃-MoO₃ by DTA and X-ray diffraction techniques and reported a phase diagram showing three compounds of Bi₂O₃ and MoO₃: 3Bi₂O₃·MoO₃, Bi₂O₃·MoO₃(same as mineral koechlinite), and Bi₂O₃·3MoO₃. They gave no X-ray data other than a collection of bar diagrams. Gattow (14) prepared 2Bi₂O₃·MoO₃ by precipitation from aqueous

X-KAY POWDER DIFFRACTION DATA FOR B1208.3M003 ^a											
hkl	d_{obs}	dcale	I_{obs}	hkl	dobs	deale	$I_{ m obs}$	hkl	dobs	deale	$I_{ m obs}$
011	7.888	7.887	15	230	2.580	2.581	1	242	1.881	1.881	23
100	6.972	6.971	23	042	2.542	2.542	2	$\overline{1}61$	1.860	1.860	3
ī11	6.290	6.290	9	$\overline{3}12$	2.511	2.511	8	$\overline{4}14$	1.853	1.853	6
110	5.962	5.964	3	202	2.485	2.485	14	233	1.840	1.840	5
020	5.759	5.758	6	$\overline{3}11$	2.446	2.446	1	115	1.831	1.831	2
002	5.412	5.412	6	231	2.348	2.348	3	$\overline{4}11$	1.826	1.826	4
021	5.084	5.084	6	$\overline{1}15$	2.328	2.328	6	$\overline{3}44$	1.808	1.808	4
$\overline{1}12$	5.033	5.032	2	300	2.325	2.324)	0	006	1.804	1.804	9
012	4.899	4.898	36	$\overline{3}21$	2.296	2.296	2	214	1.775	1.775	1
$\overline{1}21$	4.569	4.569	11	310	2.278	2.278	5	125	1.765	1.765	9
120	4.443	4.439	2	043	2.250	2.250	6	$\overline{1}63$	1.729	1.728	-
Ī13	3.758	3.758	6	142	2.247	2.247	8	410	1.723	1.723)	Э
$\overline{2}11$	3.637	3.636	1	114	2.181	2.181	3	$\overline{3}52$	1.716	1.716	14
031	3.617	3.618	12	$\bar{1}52$	2.129	2.130	4	$\overline{4}25$	1.702	1.702	8
102	3.593	3.593	11	052	2.119	2.119	6	063	1.695	1.695	16
200	3.488	3.486	2	$\overline{3}33$	2.096	2.097	3	135	1.669	1.670	2
112	3.430	3.430	6	311	2.062	2.061	2	$\overline{4}31$	1.666	1.666	4
131	3.418	3.418	5	$\overline{1}35$	2.021	2.021	2	$\overline{2}27$	1.641	1.641	7
210	3.337	3.336	10	$\overline{2}44$	2.006	2.006	22	071	1.626	1.626	1
$\overline{1}23$	3.272	3.272	23	143	1.991	1.991	2	$\overline{1}46$	1.622	1.622	5
$\overline{2}21$	3.192	3.190	100	$\overline{3}25$	1.968	1.969	3	154	1.599	1.599	3
032	3.132	3.131	6	$\overline{1}06$	1.963	1.963	5	$\overline{4}42$	1.595	1.595	10
023	3.059	3.058	90	$\overline{2}16$	1.959	1.959	3	323	1.592	1.592	10
040	2.879	2.879	87	152	1.939	1.939	2	171	1.562	1.562	2
$\overline{2}04$	2.797	2.797	18	$\bar{1}16$	1.935	1.935	2	421	1.555	1.555	8
$\overline{1}33$	2.762	2.762	2	250	1.922	1.922	3	046	1.529	1.529	8
140	2.661	2.661	4	$\overline{4}02$	1.916	1.916	16				
221	2.638	2.637	2	035	1.885	1.886	5				

TABLE 1 X-Ray Powder Diffraction Data for Bi2O2.3M0O3ª

^a d_{obs} , From Guinier pattern ($\lambda = 1.54051$ Å); d_{calc} , based on monoclinic lattice parameters, a = 7.719 Å, b = 11.516 Å, c = 11.985 Å, and $\beta = 115^{\circ}25'$; I_{obs} , integrated intensities from diffractometer pattern (Cu K α radiation).

solution, which has an oxygen-deficient CaF_2 structure with a = 5.65 Å.

It is apparent that the system Bi₂O₃-MoO₃ is not unequivocally described. In this study, compositions corresponding to 3:1, 1:1, and 1:3 by mole Bi_2O_3 : MoO₃ were prepared by ball milling the proper mixtures of oxides, then pressing them into small discs with a hydraulic press. After a heat treatment at 625°C for 16 hr, they were again ball-milled, repressed, and heated an additional 20 hr at 625°C. X-Ray diffraction patterns of these products were evaluated. Our data for $3Bi_2O_3 \cdot MoO_3$ were in agreement with that of Bleijenberg et al. (13). Data for Bi₂O₃·MoO₃ were similar to form II Bi₂O₃·MoO₃ of Erman et al. (9). Blasse (15) reported a tetragonal high-temperature form of Bi₂O₃·MoO₃ with a = 3.95 and c = 17.21 Å, prepared by heating the mixture of oxides at 750°C. The X-ray pattern of our sample contained a number of reflections in addition to those given by Blasse which could not be indexed with his lattice parameters. These additional reflections were not changed by a further heat treatment at 800°C. Since compounds 3Bi₂O₃·MoO₃ and Bi₂O₃·MoO₃ (form II) were not encountered in catalysts during this study, their crystallographic characterization was not attempted. Data for Bi₂O₃. $3MoO_3$ were generally in good agreement with the data of Erman *et al.* (9) and Bleijenberg et al. (13). However, our X-ray pattern contained numerous additional reflections. By single-crystal studies, Mekhtiev et al. (16) found that Bi₂O₃·3MoO₃ is structurally related to scheelite and it is monoclinic with a = 7.89, b = 11.70, c = 12.24, Å and $\beta = 116^{\circ}20'$. They gave no X-ray powder diffraction data.

A 1:3 by mole Bi_2O_3 : MoO₃ composition was also prepared by evaporation of an acidified (HNO₃) aqueous solution of Bi(NO₃)₃. $5H_2O + (NH_4)_6Mo_7O_{24} \cdot 4H_2O$. The dried residue was heat-treated for 16 hr at 500°C then ball-milled and heated for 20 hr at 600°C. It is an off-white colored powder, m.p. 665°C. Its X-ray pattern was identical to Bi₂O₃. $3MoO_3$ prepared starting from the oxides. The Guinier pattern could not be indexed satisfactorily with the lattice parameters of Mekhtiev et al. (16). However, the pattern was completely indexed on the basis of computer-refined monoclinic lattice parameters of a = 7.719, b = 11.516, c = 11.985 Å, and $\beta = 115^{\circ}25'$. The results are shown in Table 1. On the basis of four Bi₂O₃·3MoO₃ per unit cell, its theoretical density is calculated to be 6.197 g/cm^3 in comparison to its observed density of 6.14 g/cm³ at 25°C, obtained by the pycnometer method.

A sample of synthetic koechlinite $(Bi_2O_3 \cdot MoO_3)$ was prepared by a technique similar

to one used by Erman *et al.* (9). A 1:1 by mole Bi_2O_3 : MoO₃ composition was prepared by adding a solution of (NH₄)₆Mo₇O₂₄·4H₂O in 1:1 by volume conc. NH₄OH:H₂O into an acidified (HNO_3) aqueous solution of $Bi(NO_3)_3 \cdot 5H_2O$, kept for 1 hr at ~80°C at pH 8, evaporated after adjusting to pH 11 with conc. NH₄OH, and the residue heated for 20 hr at 500°C. It is a yellow powder, m.p. 933°C. The Guinier pattern was indexed on the basis of computer-refined orthorhombic lattice parameters of a = 5.502, b = 16.213,and c = 5.483 Å. These lattice parameters are in excellent agreement with those reported by Zemann (17) for the mineral koechlinite. The results are shown in Table 2. On the basis of four Bi₂O₃·MoO₃ per unit cell, its theoretical density is calculated as 8.281 g/cm^3 in comparison to its pycnometric density of 8.26 g/cm³ at 25°C.

Kolchin *et al.* (18) reported the formation of a stable compound $2Bi_2O_3 \cdot 3MoO_3 \cdot P_2O_5$, by introduction of phosphorus into bismuth molybdates. However, our inspection of their unindexed X-ray data revealed a close match for a mixture of the high-temperature form BiPO₄ (19) and Bi₂O₃·3MoO₃. Therefore,

hkl	$d_{\mathbf{obs}}$	deale	$I_{ m obs}$	hkl	d_{obs}	deale	$I_{ m obs}$
020	8.094	8.107	15	202	1.942	1.942	17
021	4.538	4.542	1	260	1.927	1.928	10
111	3.776	3.777	3	062	1.925	1.925	17
041	3.259	3.259	2	222	1.889	1.889	2
131	3.153	3.154	100	023	1.783	1.783	1
200	2.750	2.751	16	311	1.730	1.729	1
002	2.741	2.742	18	113	1.724	1.725	1
060	2.701	2.702	16	172	1.684	1.684	1
220	2.604	2.605	3	331	1.656	1.656	13
022	2.597	2.597		133	1.652	1.652	19
151	2.489	2.489	8	191	1.634	1.634	18
112	2.426	2.426	2	082	1.630	1.630	2
221	2.353	2.353	1	262	1.577	1.577	13
240	2.276	2.276	3	351	1.533	1.533	1
042	2.270	2.271		153	1.530	1.529	2
132	2.241	2.233	<1	312	1.518	1.518	<1
241	2.099	2.102	<1	223	1.496	1.496	1
080	2.027	2.027	<1	243	1.425	1.425	1
152	1.957	1.957	1	282	1.402	1.402	1

 TABLE 2

 X-Ray Powder Diffraction Data for Bi₂O₃·MoO₃ (Synthetic Koechlinite)^a

^a d_{obs} , From Guinier pattern ($\lambda = 1.54051$ Å); d_{cale} , based on orthorhombic lattice parameters, a = 5.502 Å, b = 16.213 Å, and c = 5.483 Å; I_{obs} , integrated intensities from diffractometer pattern (Cu K α radiation).

a 1:2:3 by mole P_2O_5 : Bi_2O_3 : MoO_3 composition was prepared from solution by evaporation and by heating the residue 16 hr at 600°C. It contained only Bi_2O_3 · $3MoO_3$ plus high-temperature form $BiPO_4$; a new phase could not be detected. Obviously, Kolchin *et al.* were dealing with a mixture, not with a new phase.

B. Preparation and Characterization of the Catalyst

In this study a 70% 1:9:24 by mole P_2O_5 :Bi₂O₃:MoO₃ + 30% SiO₂ catalyst, a catalyst for the acrylonitrile process, described in the patent literature (1), was used. It was prepared by the following procedure:

An acidified (HNO₃) aqueous solution of $Bi(NO_3)_3:5H_2O$ was added under vigorous agitation to an aqueous colloidal silica* containing H_3PO_4 and molybdic acid and then ball-milled for 1 hr. After evaporating on a steam bath it was dried for 16 hr at 130°C. The material was ground, screened to collect 60–200 mesh portion, and heated in air for 16 hr at 540°C.

The BET surface area of this catalyst was 30 m^2/g . The irregularly shaped grains had a homogeneous appearance, as observed from photomicrographs. Transmission electron micrographs indicated that the catalyst grains were composed of fairly transparent, uniform round particles of about $0.015-\mu$ size and nontransparent, irregularly shaped particles in the approximate range of 0.05– 0.30 μ . The particles fairly transparent to electron beam are amorphous SiO_2 . The nontransparent particles are apparently P_2O_5 -Bi₂O₃-MoO₃ compositions. Phase analysis of the catalyst by X-ray diffraction indicated only a large amount of Bi₂O₃·3MoO₃ plus a small amount of the high-temperature form of $BiPO_4$ (19), except for a barely detectable trace of Bi₂O₃·MoO₃ (koechlinite). The X-ray pattern had no unidentified peaks nor any amorphous bands.

The following compositions were prepared by the same procedure used for the catalyst preparation in order to examine the phase composition in the absence of SiO₂ and phosphorus: (I) 1:9:24 by mole P_2O_5 : Bi_2O_3 : MoO₃, (II) 9:24 by mole Bi_2O_3 : MoO₃. Compositions I and II contained, respectively, a large amount of Bi₂O₃·3MoO₃, a small amount of the high-temperature form of $BiPO_4$, plus a trace of koechlinite; and a large amount of Bi₂O₃·3MoO₃ plus a small amount of koechlinite. Aqueous colloidal silica after evaporation, drying, and heating for 16 hr at 540°C was amorphous and had only a very broad band ($d \approx 4.1$ Å) on its X-ray pattern. Calculations showed that this amorphous band of SiO₂ could not be detected in the X-ray pattern of the actual catalyst due to the high mass absorption coefficient (for X-rays) of catalyst. On the basis of this and electron micrographs, it is conclusive that SiO_2 is in an amorphous state in the catalyst.

In a high-temperature X-ray diffraction study of the catalyst in air in the temperature range of 25–600°C, no chemical or crystallographic phase changes were observed. Therefore, the phase composition of the catalyst at synthesis temperature is the same as at room temperature.

C. Reduction of the Catalyst in Synthesis

The ammoxidation of propylene to acrylonitrile in the absence of gaseous oxygen was studied using the 70% 1:9:24 by mole $P_2O_5:Bi_2O_3:MoO_3 + 30\%$ SiO₂ catalyst in a fluid-bed reactor with a feed gas of 5.1%C₃H₆, 5.1% NH₃, and 89.8% N₂, at 450°C, and 340 hr^{-1} volume hourly space velocity. Using 100 cm³ of fresh catalyst for each run, syntheses of 10-, 30-, 60-, 90-, 115-, and 180min duration were made. During each run. the reactor off-gas was monitored periodically for C₃H₆, NH₃, acrylonitrile, acetonitrile, and CO_2 to determine the catalytic activity and selectivity as a function of time in synthesis. At the conclusion of each run, the catalyst was removed from the reactor after cooling to room temperature in a N_2 atmosphere and its phase composition was determined by X-ray diffraction.

Since the catalytic data obtained from all of these runs were similar, only the results of a 180-min run are shown in Figs. 1 and 2. The

^{*} Ludox LS Colloidal Silica, from Industrial and Biochemicals Dept., E. I. du Pont de Nemours & Co. It contains 30.3% SiO₂, 0.1% Na₂O; approximate colloidal particle diameter 15-16 m μ .

FIG. 1. Feed gas consumption over P_2O_5 -Bi₂O₅-MoO₃/SiO₂ catalyst (5.1% C₃H₆, 5.1% NH₅, 89.8% N₂; 450°C; 340 hr⁻¹ volume hourly space velocity).

catalytic activity is at a maximum with the fresh catalyst, then declines sharply with increasing time in synthesis. Consumption of C_3H_6 first decreases nearly linearly with time and more rapidly than NH_3 , then it slows down (Fig. 1). In a separate experiment, by passing an NH_3 plus argon mixture over the catalyst, a complete oxidation of NH_3 according to the following reaction was observed:

$$2 \text{ NH}_3 + \frac{3}{2} \text{O}_2 \rightarrow \text{N}_2 + 3 \text{ H}_2 \text{O}$$
 (1)

Conversion of C_3H_6 to the main products acrylonitrile, acetonitrile, and CO_2 was cal-

FIG. 2. Conversion to main products over P_2O_5 -Bi₂O₅-MoO₈/SiO₂ catalyst (for conditions see Fig. 1).

culated on the basis of the following assumed overall reactions:

$$C_3H_6 + NH_3 + \frac{3}{2}O_2 \rightarrow C_3H_3N + 3 H_2O$$
(2)

 $C_{3}H_{6} + NH_{3} + \frac{5}{2}O_{2} \rightarrow C_{2}H_{3}N + CO_{2} + 3 H_{2}O$ (3)

$$C_3H_6 + \frac{9}{2}O_2 \rightarrow 3 CO_2 + 3 H_2O \tag{4}$$

Conversion to acrylonitrile is at a maximum with the fresh catalyst and stays at this level for a short time, then declines rapidly (Fig. 2). Interestingly, after about 60 min no acetonitrile could be detected. Small amounts of CO and HCN were also found in the product gas, but were not monitored in these experiments. The carbon content of each used catalyst sample was determined by a microcombustion technique. Carbon deposition on the catalyst increases steadily with time in synthesis (Fig. 3).

The used catalysts were black. Phase analysis of these catalysts indicated that the high-temperature form of BiPO₄ was not affected in synthesis under the conditions. of these experiments. Bi₂O₃·3MoO₃ was reduced to metallic Bi and MoO₂ as the final phases. During this reduction, Bi₂O₃·MoO₃. (koechlinite) was formed as an intermediate phase. No other intermediate phases were detected. By this reduction, the elemental composition of the catalyst changes (loss of oxygen), resulting in a change of the X-ray mass absorption coefficient of the catalyst. For fresh and fully reduced catalysts, the mass absorption coefficients (for Cu $K\alpha$) were calculated to be 127 and 135 cm^2/g . respectively. By neglecting this small change of mass absorption coefficient, the X-ray diffraction intensity becomes directly

FIG. 3. Carbon deposition on P_2O_5 -Bi₂O₃-MoO₃/SiO₂ catalyst (for conditions see Fig. 1).

FIG. 4. Reduction of $Bi_2O_3 \cdot 3MoO_3$ of $P_2O_5 - Bi_2O_3 - MoO_3/SiO_2$ catalyst in synthesis (for conditions see Fig. 1).

proportional to concentration. For quantitative phase analysis, the peak heights of the (023), (014), (131), and (110) reflections were used for Bi₂O₃·3MoO₃, Bi, koechlinite, and MoO_2 , respectively. Concentrations were calculated as relative moles normalized on the basis of 1 mole of Bi₂O₃·3MoO₃. The results are shown in Fig. 4. The concentration profiles shown in solid lines were entirely based on a best fit to the experimental data points. The profiles shown in dashed lines were calculated from a material balance and they are in satisfactory agreement with the experimental data points. The overall chemical phase changes of Bi₂O₃·3MoO₃ in synthesis (Fig. 4) are explained by the following two consecutive reactions:

Since BiPO₄ and amorphous SiO₂ are not affected and only Bi₂O₃·3MoO₃ is reduced in synthesis, the "available O₂" content of this particular catalyst was calculated (on the basis of Bi₂O₃·3MoO₃ \rightarrow 3 O₂) as 0.215 moles O₂ per 100 g catalyst. Depletion of oxygen from the catalyst, as a function of time in synthesis, was obtained in three different ways:

(1) Oxygen depletion was calculated on the basis of phase compositions of used catalysts (Fig. 4) obtained from X-ray data.

(2) The amount of oxygen given off from the catalyst was calculated from the NH_3 consumption and the main reaction products (Figs. 1, 2) assuming the reactions (1)–(4).

(3) A small portion of each used catalyst was heated in air for 18 hr at 550°C and the weight increase was measured. Complete oxidation of the samples was confirmed by X-ray diffraction. After a correction for the carbon content of each sample, the oxygen uptake or the oxygen depletion of the catalyst was determined. The results are shown in Fig. 5. The agreement of oxygen depletion determined gravimetrically, with the depletion calculated from X-ray data and from the main reaction products is very good.

By microscopic inspection of used catalysts, separation of metallic Bi (molten at the synthesis temperature, m.p. 271°C) from the catalyst grains was not observed. It is apparently held in the pores of the amorphous SiO₂ matrix. The used catalysts were regenerated with an air and N₂ mixture at 450–500°C, restoring the initial phase composition and the catalytic activity

FIG. 5. Oxygen depletion of P_2O_3 -Bi₂O₃-MoO₃/SiO₂ catalyst in synthesis; \bigcirc , determined gravimetrically; \triangle , calculated from reaction products (for conditions see Fig. 1).

of the catalyst. As intermediate phases of regeneration reactions, only β -Bi₂O₃ (20), MoO₃, and koechlinite were detected. Therefore, during the regeneration, carbon (coke) is burned off, metallic Bi and MoO₂ are oxidized to β -Bi₂O₃ and MoO₃, respectively, and finally Bi₂O₃·3MoO₃ is formed by solid state reactions. Koechlinite is apparently an intermediate in the formation of Bi₂O₃· 3MoO₃ during the regeneration.

A comparison of Figs. 1–5 indicates that the rapid decline of activity with time is apparently caused by a combination of the depletion of lattice oxygen (requiring oxygen ion diffusion in the solid), deposition of carbon, and the phase changes of the catalyst. The product formation and the phase changes of the catalyst correspond quantitatively to the depletion of lattice oxygen from the catalyst (Fig. 5). By the reduction of P_2O_5 -Bi₂O₃- MoO_3/SiO_2 catalyst with $C_3H_6 + NH_3$, the same products are formed as by the catalytic reaction of $C_3H_6 + NH_3 + O_2$ over the same catalyst. Therefore, it is suggested that the catalytic ammoxidation of propylene to acrylonitrile proceeds by a steady state mechanism in which the catalyst surface simultaneously reduces and reoxidizes with gaseous oxygen. These results agree with the recent literature. Batist, Kapteijns, Lippens, and Schuit (21), reported that the reduction of Bi₂O₃-MoO₃ catalyst by 1-butene proceeds to MoO_2 and Bi. In their extensive studies, using a mathematical model for a surface reaction followed by oxygen vacancy diffusion in the solid, they concluded that the catalytic oxidation of 1-butene consists of a surface reaction followed by a reoxidation with gaseous oxygen. Bhattacharyya, Janakiram, and Ganguly (22), from kinetic studies, reported a similar mechanism for the oxidation of methanol on V_2O_5 . Levy (23) reported the variation of the oxidation state in bulk of a cobalt oxide catalyst with reaction conditions during the oxidation of butane. Correlations between the catalytic activity of metal oxides in hydrocarbon oxidation and metal-oxygen bond strength have been reported (24-26).

D. Catalytic Activity vs. Composition in the System Bi₂O₃-MoO₃

There are recent investigations, carried out in the presence of gaseous oxygen. Kolobikhin and Emel'yanova (27) studied the oxidative dehydrogenation of butenes to 1,3-butadiene over Bi₂O₃-MoO₃ catalysts supported on silica gel and concluded that the optimal catalyst composition corresponds to a Bi: Mo atomic ratio of 0.7–0.9. Batist, Lippens, and Schuit (28) reported the maximum activity at a Bi: Mo atomic ratio of about 1 for the oxidative dehydrogenation of 1-butene to butadiene over unsupported Bi₂O₃-MoO₃ catalysts. They found $Bi_2O_3 \cdot 3MoO_3$ to be almost inactive. For the ammoxidation of propylene to acrylonitrile in the presence of gaseous oxygen, Gel'bshtein $\epsilon t \ al. \ (29)$ found optimal activity at a Bi: Mo atomic ratio of 1 using unsupported Bi₂O₃-MoO₃ catalysts.

In this study, the catalytic activity for the ammoxidation of propylene to acrylonitrile without gaseous oxygen was studied as

Desig- – nationª	Compositio	Heat t	reatment			
	Bi: Mo atomic ratio	% SiO2	hr	°C	Phases present	
A	Bi ₂ O ₃ only	0	1	500	α-Bi ₂ O ₃	
в	4:1	30	16	375	$2\mathrm{Bi}_{2}\mathrm{O}_{3}\cdot\mathrm{MoO}_{3}^{b}$	
\mathbf{C}	2:1	30	16	540	Koechlinite ^b	
D	4:3	30	16	500	Koechlinite + small Bi ₂ O ₃ ·3MoO ₃ ^t	
\mathbf{E}	1:1	30	16	500	Koechlinite + Bi ₂ O ₃ ·3MoO ₃ ^b	
\mathbf{F}	2:3	30	16	540	Bi ₂ O ₃ ·3MoO ₃ ^b	
G	MoO3 only	30	16	540	MoO_{3}^{b}	

 TABLE 3

 CATALYSTS WITH VARYING BI: MO RATIO

" A, c.p. grade Bi_2O_3 formed into $\frac{3}{16}$ -inch pellets; B-G, prepared from solution using Ludox LS, 60-200 mesh fluid-bed catalysts.

^b SiO₂ was amorphous.

Catalyst	% Consumption of acrylonitrile fed ^b	Major products ^e
A (Bi ₂ O ₃)	92	CO ₂ , acetonitrile
C (Bi: Mo = 2:1, 30% SiO ₂)	6	CO ₂ , acetonitrile
$F (Bi; Mo = 2:3, 30\% SiO_2)$	2	CO_2
G (MoO ₃ , 30% SiO ₂)	0	
Gå	56°	Mainly "coke" + CO ₂ , acetonitrile, propionitrile
70% 1:9:24 mole P2O5:Bi2O3:MoO3 + 30% SiO2	11	CO ₂ , acetonitrile
Amorphous SiO ₂	0	
None (empty reactors)	0	_

 TABLE 4

 Decomposition of Acrylonitrile in the Absence of Gaseous Oxygen^a

^a Feed gas, 4% acrylonitrile in helium; 460°C; 340 hr⁻¹ volume hourly space velocity.

^b Average of 40 min runs.

^c Reactor effluent gas was not analyzed for CO.

^d After complete reduction of MoO₃ to MoO₂ with a 40% NH₃, 60% N₂ gas at 460°C, 340 hr⁻¹ volume hourly space velocity.

^e First 5 min; consumption decreased to 4% at 35 min.

a function of composition in the system Bi_2O_3 -MoO₃. The catalysts used are described in Table 3. Activity tests were done with a feed gas of 4.6% C₃H₆, 6.8% NH₃. 88.6% N₂, at 450°C, and 170 hr⁻¹ volume hourly space velocity. Under the conditions of these experiments, pure amorphous SiO₂ (used as a support in the fluid-bed catalysts) was practically inert. With the catalysts shown in Table 3, the average percent con-

FIG. 6. Conversion to acrylonitrile as a function of composition in the system Bi_2O_3 - MoO_3 (4.6% C_3H_6 , 6.8% NH_3 , 88.6% N_2 ; 450°C; 170 hr⁻¹ volume hourly space velocity).

version to acrylonitrile for the initial 20-min period of each run was plotted as a function of mole % MoO₃ in the Bi₂O₃-MoO₃ composition. The results are shown in Fig. 6. The main reaction product over Bi₂O₃ was CO₂ with a trace of acetonitrile but no acrylonitrile. MoO₃ has low activity. In the 50–75 mole % MoO₃ region, including the compounds koechlinite and Bi₂O₃·3MoO₃, there is high activity. The optimum activity for conversion of propylene to acrylonitrile in the absence of gaseous oxygen, is at a Bi: Mo atomic ratio of about 1 (catalyst E in Fig. 6). This is an excellent agreement with the results obtained by the presence of gaseous oxygen (29). At this ratio, the catalyst contained a mixture of koechlinite and Bi₂O₃. $3MoO_3$; a Bi₂O₃·2MoO₃ (10) phase was not observed.

The decomposition of acrylonitrile in the absence of gaseous oxygen was briefly investigated by passing a gas of 4% acrylonitrile in helium over various catalysts at 460°C, 340 hr⁻¹ volume hourly space velocity. The results are shown in Table 4. By a comparison of Table 4 with Table 3 and Fig. 6, it is seen that catalysts with high selectivity for acrylonitrile gave low decomposition. Amorphous SiO₂ and MoO₃ are inert to acrylonitrile. Acrylonitrile decomposes greatly on Bi₂O₃. Decomposition of

acrylonitrile on noncarbonized MoO₂ is very high initially, then decreases rapidly with the increasing deposition of large amounts of carbon on the MoO₂ catalyst. Naumov, Balandin, Tolstopyatova, and Korytnyi (30) reported similar results for the decomposition of alcohols on MoO₂.

ACKNOWLEDGMENTS

The author is greatly indebted to Mr. R. P. Goss of this Laboratory, for some of the catalytic data; and to the following persons from the Central Research Department of DuPont. Dr. A. W. Sleight for his help in computer-indexing the X-ray powder diffraction pattern of Bi_2O_3 ·3MoO₃, and Dr. J. F. Whitney and Miss M. S. Licis for the Guinier patterns and refinements.

References

- IDOL, J. D., JR., The Standard Oil Company, Cleveland, Ohio, U. S. Patent 2,904,580 (1959).
- CALLAHAN, J. L., SZABO, J. J., AND GERTISSER, B., The Standard Oil Company, Cleveland, Ohio, U. S. Patent 3,186,955 (1965).
- KOLCHIN, I. K., GAL'PERIN, E. L., MARGOLIS, L. YA., AND BOBKOV, S. S., Neftekhimiya 5, 573-578 (1965) (Translation: Assoc. Tech. Services, Inc.).
- KOLCHIN, I. K., GUS'KOV, K. A., AND SKAL-KINA, L. V., *Khim. Prom.* 41, 881-887 (1965) (Translation: SLA Translations Center TT-66-14901).
- DALIN, M. A., LOBKINA, V. V., ABAEV, G. N., SEREBRYAKOV, S. R., AND PLAKSUNOVA, S. L., Proc. Acad. Sci. USSR Chem. Sec. (Engl. transl.) 145, 718-720 (1962).
- LECLERCQ, R., Union Chimique Belge Societe Anonyme, Brussels, Belgium, Brit. Patent 885,422 (1961).
- EYGEN, C. V., WALLRAVENS, J., LAMBERT, P., AND HENDRICKX, A., Union Chimique-Chemische Bedrijven Societe Anonyme, Brussels, Belgium, Brit. Patent 999,629 (1965).
- 8. MALHOTRA, S. C., unpublished data, 1965.
- ERMAN, L. YA., GAL'PERIN, E. L., KOLCHIN, L. K., DOBRZHANSKII, G. F., AND CHERNY-SHEV, K. S., Russ. J. Inorg. Chem. (Engl. transl.) 9, 1174-1176 (1964).
- ERMAN, L. YA., AND GAL'PERIN, E. L., Russ.
 J. Inorg. Chem. (Engl. transl.) 11, 122 (1966).
- 11. ERMAN, L. YA., AND KOLCHIN, L. K., in "Abstracts of Communications—Seventh Inter-

national Congress and Symposium on Crystal Growth, Moscow, USSR," p. A76, I.U.Cr. (1966).

- DOYLE, W. P., AND FORBES, F., J. Inorg. Nucl. Chem. 27, 1271–1280 (1965).
- BLEIJENBERG, A. C. A. M., LIPPENS, B. C., AND SCHUIT, G. C. A., J. Catalysis 4, 581-585 (1965).
- 14. GATTOW, G., Z. Anorg. Allgem. Chem. 298, 64-71 (1959).
- BLASSE, G., J. Inorg. Nucl. Chem. 28, 1124– 1125 (1966).
- MEKHTIEV, K. M., GAMIDOV, R. S., MAMEDOV, KH. S., AND BELOV, N. V., Soviet Phys.— Doklady 10, 397–398 (1965).
- ZEMANN, J., Heidelberger Beitr. Mineral. Petrogr. 5, 139–145 (1956).
- KOLCHIN, I. K., GAL'PERIN, E. L., BOBKOV, S. S., AND MARGOLIS, L. YA., *Kinetics Catalysis* (USSR) (Engl. transl.) 6, 794–798 (1966).
- MOONEY-SLATER, R. C. L., Z. Krist. 117, 371– 385 (1962).
- GATTOW, G., AND SCHÜTZE, D., Z. Anorg. Allgem. Chem. 328, 44-68 (1964).
- BATIST, PH. A., KAPTEIJNS, C. J., LIPPENS, B. C., AND SCHUIT, G. C. A., J. Catalysis 7, 33-49 (1967).
- BHATTACHARYYA, S. K., JANAKIRAM, K., AND GANGULY, N. D., J. Catalysis 8, 128-136 (1967).
- LEVY, R. M., in "Abstracts of Papers-154th Meeting A.C.S., Chicago, Illinois," I-25 (1967).
- MORO-OKA, Y., AND OZAKI, A., J. Catalysis 5, 116 (1966).
- 25. Мого-ока, Ү., Могікаwa, Ү., AND Оzакі, А., J. Catalysis 7, 23-32 (1967).
- 26. SIMONS, TH. G. J., VERHEIJEN, E. J. M., BATIST, PH. A., AND SCHUIT, G. C. A., in "Original Manuscripts—International Oxidation Symposium, San Francisco, Calif.," Vol. 2, pp. 29-48. Stanford Res. Inst., Menlo Park, Calif., 1967.
- KOLOBIKHIN, V. A., AND EMEL'YANOVA, E. N., Intern. Chem. Eng. 5, 351-354 (1965).
- BATIST, PH. A., LIPPENS, B. C., AND SCHUIT, G. C. A., J. Catalysis 5, 55-64 (1966).
- GFL'BSHTEIN, A. I., et al., Neftekhimiya 4, 906-915 (1964).
- NAUMOV, V. A., BALANDIN, A. A., TOLSTOPYA-TOVA, A. A., AND KORYTNYI, E. F., Bull. Acad. Sci. USSR Div. Chem. Sci. pp. 736– 740 (1967).